
Containerized Linux Print Server using
Octoprint - the long way

The long way is for if you care about the technical steps and
want to reproduce it yourself. See the short way to just get
the LXC Octoprint image and get up and running as easy as
possible.

The primary purpose of the article is to bookmark and reference my efforts to get Octoprint as
opposed to Octopi, up and running on a repurposed redundant HP Laptop.

It might not be obvious why we want to do all of this, so let me start by explaining why all this effort
was undertaken. So typically we would run Octopi instead, so Octorpint on a raspberry Pi. The issue
with this is that due to chip shortages Pi's are now scarce and very expensive and quite framkly, mine
has become slow and frustrating, so running this on a Linux PC is just orders of magnitude faster and
more reliable, the issue is that Octoprint only supports one printer at a time, so if we can containerize
them, we can keep on expanding until we run our of USB ports, or hardware resources, RAM, CPU and
disk space. One instance of Octoprint on my 8 year old HP-Pavilion executes gcode processing about
100 times faster than my Pi 3B and the webcams just never glitch or hang, not to mention print fails
because a Pi overheated or stop communicating.

This should be straightforward, how hard can it be, right. I thought so too, but days later I realized
that this has to be revisited and documented as I probably will not remember most if what was done
by the next time I have to repeat this process.

The basic steps to complete the process were as follow:

Setup The Base Linux OS on the Laptop
Install and configure LXD/LXC(Linux Containers)
Pass Through and set up the printer connection
Pass through and set up the webcam connection
Start up and set up Octprint in the container

Setup The Base Linux OS on the Laptop

Download Ubuntu 22.04 LTS 1)

Create a bootable ISO Using Rufus 2) 3)

Boot from the ISO and install Ubuntu
Create a Bridge for LXC(Linux Containers)
Create a partition on Linux that LXD can use as a storage pool

Create a Bridge for LXC(Linux Containers)

The default config typically looks like this:

http://jattie.com/projects/3dprint/octoprint_image
http://jattie.com/projects/3dprint/octoprint_image

root@hp-linux:~# nano /etc/netplan/00-installer-config.yaml
This is the network config written by 'subiquity'
network:
 ethernets:
 eno1:
 dhcp4: true
 version: 2

Amend as folow to add a bridge called br0 to the config.

root@hp-linux:~# cat /etc/netplan/00-installer-config.yaml
This is the network config written by 'subiquity'
network:
 ethernets:
 eno1: {}
 bridges:
 br0:
 dhcp4: true
 interfaces:
 - eno1
 #gateway4: 192.168.0.1
 version: 2

Adding a bridge allows lxc to assign network accessible DHC assigned IP addresses to the containers,
i.e your container will look like regular machines on the network with similar ip addresses to other
systems on the router. That will allow you to connect to octoprint using the ip or host name.

We will need br0 in the following steps setting up LXD

Create a partition on Linux that LXD can use as a storage pool

This step basically aims to utilize the remaining disk space that was not allocated by the ubuntu
install. The HP system happens to have more that 1TiB of storage and the Linux base OS install only
allocated 98GiB by default.

Lots of googling and many articles later 4) 5) I started with a few commands to asses what is available
and how to partition that for use by LXD.

root@hp-linux:~# fdisk -l /dev/sda
Disk /dev/sda: 1.82 TiB, 2000398934016 bytes, 3907029168 sectors
Disk model: ST2000LM003 HN-M
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
Disklabel type: gpt
Disk identifier: 1D2EE2A6-79C5-4DBD-B799-42B48F45F62E

Device Start End Sectors Size Type
/dev/sda1 2048 2203647 2201600 1G EFI System
/dev/sda2 2203648 6397951 4194304 2G Linux filesystem
/dev/sda3 6397952 3907026943 3900628992 1.8T Linux filesystem

Command Description
pvs Display information about physical volumes
lvs Display information about logical volumes
vgs Display information about volume groups
pvdisplay Display various attributes of physical volume(s)
lvdisplay Display information about a logical volume
vgdisplay Display volume group information
lvmdiskscan List devices that may be used as physical volumes

Using the commands above to discover what space is available to assign to the lxc storage pool.

root@hp-linux:~# pvs
 PV VG Fmt Attr PSize PFree
 /dev/sda3 ubuntu-vg lvm2 a-- <1.82t 735.96g
root@hp-linux:~# vgs
 VG #PV #LV #SN Attr VSize VFree
 ubuntu-vg 1 2 0 wz--n- <1.82t 735.96g
root@hp-linux:~# lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log
Cpy%Sync Convert
 lv-lxc ubuntu-vg -wi-ao---- 1.00t
 ubuntu-lv ubuntu-vg -wi-ao---- 100.00g
root@hp-linux:~# pvdisplay
 --- Physical volume ---
 PV Name /dev/sda3
 VG Name ubuntu-vg
 PV Size <1.82 TiB / not usable 4.00 MiB
 Allocatable yes
 PE Size 4.00 MiB
 Total PE 476150
 Free PE 188406
 Allocated PE 287744
 PV UUID rvz2ag-hDP0-Yb9l-eCr5-P0lK-vslK-Le7W4u

root@hp-linux:~# vgdisplay
 --- Volume group ---
 VG Name ubuntu-vg
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 3
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 2

 Open LV 2
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size <1.82 TiB
 PE Size 4.00 MiB
 Total PE 476150
 Alloc PE / Size 287744 / <1.10 TiB
 Free PE / Size 188406 / 735.96 GiB
 VG UUID DfphO5-yeK8-Pkrb-JZh3-TMEU-jLF4-4pn1WY

root@hp-linux:~# lvdisplay
 --- Logical volume ---
 LV Path /dev/ubuntu-vg/ubuntu-lv
 LV Name ubuntu-lv
 VG Name ubuntu-vg
 LV UUID lupg0H-eV6M-l5YN-UjNV-j75K-P55e-a7hkeg
 LV Write Access read/write
 LV Creation host, time ubuntu-server, 2023-05-12 10:52:34 +0000
 LV Status available
 # open 1
 LV Size 100.00 GiB
 Current LE 25600
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:0

 --- Logical volume ---
 LV Path /dev/ubuntu-vg/lv-lxc
 LV Name lv-lxc
 VG Name ubuntu-vg
 LV UUID b9oWe9-UBQg-yQ3R-Io3F-XcoY-lUm3-cy8GtK
 LV Write Access read/write
 LV Creation host, time hp-linux, 2023-05-12 12:24:45 +0000
 LV Status available
 # open 1
 LV Size 1.00 TiB
 Current LE 262144
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:1

The two commands used to set up the spare disk space was:

root@hp-linux:~# lvcreate -L 1T -n lv-lxc ubuntu-vg
root@hp-linux:~# mkfs.ext4 /dev/ubuntu-vg/lv-lxc

The first command creates a local volume of 1TiB names lv-
lxc in the ubuntu-vg.

The second command creates an ext4 filesystem on the
volume.

Using df and lsblb to initially inspect what we can see:

root@hp-linux:~# df -h
Filesystem Size Used Avail Use% Mounted on
tmpfs 779M 1.7M 778M 1% /run
/dev/mapper/ubuntu--vg-ubuntu--lv 98G 12G 82G 13% /
tmpfs 3.9G 0 3.9G 0% /dev/shm
tmpfs 5.0M 0 5.0M 0% /run/lock
/dev/sda2 2.0G 272M 1.6G 15% /boot
/dev/sda1 1.1G 6.1M 1.1G 1% /boot/efi
tmpfs 1.0M 0 1.0M 0%
/var/snap/lxd/common/ns
tmpfs 779M 4.0K 779M 1% /run/user/0

No new mounted filesystem, but in the block devices we now have ubuntu–vg-lv–lxc with 1TiB of
space assigned.

root@hp-linux:~# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
loop0 7:0 0 63.3M 1 loop /snap/core20/1879
loop1 7:1 0 73M 1 loop /snap/core22/617
loop2 7:2 0 111.9M 1 loop /snap/lxd/24322
loop3 7:3 0 53.2M 1 loop /snap/snapd/19122
loop4 7:4 0 73.1M 1 loop /snap/core22/634
loop5 7:5 0 55.6M 1 loop /snap/core18/2745
loop6 7:6 0 108.5M 1 loop /snap/lxdmosaic/247
loop7 7:7 0 63.5M 1 loop /snap/core20/1891
sda 8:0 0 1.8T 0 disk
├─sda1 8:1 0 1G 0 part /boot/efi
├─sda2 8:2 0 2G 0 part /boot
└─sda3 8:3 0 1.8T 0 part
 ├─ubuntu--vg-ubuntu--lv 253:0 0 100G 0 lvm /
 └─ubuntu--vg-lv--lxc 253:1 0 1T 0 lvm
sr0 11:0 1 1024M 0 rom

root@hp-linux:~# lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log
Cpy%Sync Convert
 lv-lxc ubuntu-vg -wi-ao---- 1.00t

 ubuntu-lv ubuntu-vg -wi-ao---- 100.00g

We can also look at the mountpoints for the block devices like this:

root@hp-linux:~# lsblk -o NAME,FSTYPE,LABEL,SIZE,MOUNTPOINT
NAME FSTYPE LABEL SIZE
MOUNTPOINT
loop0 squashfs 63.3M
/snap/core20/1879
loop1 squashfs 73M
/snap/core22/617
loop2 squashfs 111.9M
/snap/lxd/24322
loop3 squashfs 53.2M
/snap/snapd/19122
loop4 squashfs 73.1M
/snap/core22/634
loop5 squashfs 55.6M
/snap/core18/2745
loop6 squashfs 108.5M
/snap/lxdmosaic/247
loop7 squashfs 63.5M
/snap/core20/1891
sda 1.8T
├─sda1 vfat 1G
/boot/efi
├─sda2 ext4 2G /boot
└─sda3 LVM2_member 1.8T
 ├─ubuntu--vg-ubuntu--lv ext4 100G /
 └─ubuntu--vg-lv--lxc zfs_member lxd_storage_pool_default 1T
sr0 1024M

lvdisplay gives us the path to the storage pool required
for the next steps in LV Path that point to /dev/ubuntu-
vg/lv-lxc

Install and configure LXD/LXC(Linux Containers)

Install the latest stable version of LXD
Initialise LXD

Specify the Bridge for Use that was set up in the OS setup section
Point the storage pool to the partition created previously

Create and launch a container for octoprint

Install the latest stable version of LXD

At the time of writing this, see file date below right, LXD 5.0 was the stable release candidate, we
want ti make sure to run that. My distribution uses snap, so using snap to check versions installed you
can run snap list.

root@hp-linux:~# snap list
Name Version Rev Tracking Publisher Notes
core18 20230426 2745 latest/stable canonical✓ base
core20 20230503 1891 latest/stable canonical✓ base
core22 20230503 634 latest/stable canonical✓ base
lxd 5.0.2-838e1b2 24322 5.0/stable canonical✓ -
lxdmosaic 0+git.c6f53f3f 247 latest/stable turtle0x1 -
snapd 2.59.2 19122 latest/stable canonical✓ snapd

If you don't have a stable candidate, it can be removed and reinstalled as follow:

root@hp-linux:~# snap remove lxd
root@hp-linux:~# snap install lxd --channel=5.0/stable

Initialise LXD

The next step is to is to edit configurations and view logs, you need to get this set up.

SSH comes bundled with Linux and is already set up and installed, we just need some minor edits to
allow users to log in using password authentication. The linux preferred way is to create RSA tokens
and it's a great idea, just beyond the scope if this document. 6)

We are just going to allow a password authentication for now:

We need to:

edit the ssh daemon configuration first
restart the service

We can do it from our host Linux server OS directly on the container like this:

dev@hp-linux:~$ lxc exec octo -- bash -c "nano /etc/ssh/sshd_config"

That opens the sshd_config file on ythe container and allows us to edit it locally.

find and uncomment/edit PasswordAuthentication no to yes

To disable tunneled clear text passwords, change to no here!
#PasswordAuthentication no
#PermitEmptyPasswords no

To disable tunneled clear text passwords, change to no here!
#PasswordAuthentication no
PasswordAuthentication yes

#PermitEmptyPasswords no

Then remember to restart sshd

dev@hp-linux:~$ lxc exec octo -- bash -c "systemctl restart sshd"

Now test ssh connectivity

dev@hp-linux:~$ ssh octo@octo
octo@cr6's password:
Welcome to Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-71-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 System information as of Thu May 18 09:37:40 UTC 2023

 * Strictly confined Kubernetes makes edge and IoT secure. Learn how
MicroK8s
 just raised the bar for easy, resilient and secure K8s cluster
deployment.

 https://ubuntu.com/engage/secure-kubernetes-at-the-edge

Expanded Security Maintenance for Applications is not enabled.

13 updates can be applied immediately.
5 of these updates are standard security updates.
To see these additional updates run: apt list --upgradable

9 additional security updates can be applied with ESM Apps.
Learn more about enabling ESM Apps service at https://ubuntu.com/esm

Last login: Thu May 18 09:34:52 2023 from 192.168.0.32
octo@octo:~$

We are now connected as the octo user on the oct instance of lxc. I use PuTTY7) to connect from my
Windows PC into a Linux shell session to work on the backends of the Linux headless systems.

Start up and set up Octprint in the container

The last section follows the instruction from the Octoprint community forum for published here 8)

https://community.octoprint.org/t/setting-up-octoprint-on-a-raspberry-pi-running-raspberry-pi-os-debian/2337

There is a current issue with some of the key plugins I need to work, i.e. Filament manager and Spool
manager that causes failures running under Python 3.10 on the Linux setup. Forcing the install to
Python 3.9 in the virtual environment creation, resolves the issues.

Set up a Python 3.9 virtual environment (venv)

add repositories to get access to 3.9
install 3.9

octo@octo:~# sudo add-apt-repository universe #add universe as a
repo option
octo@octo:~# sudo apt update #and update the
repo source list on the instance
octo@octo:~# sudo apt install python3.9 #try to install
3.9, stop here on success
octo@octo:~# sudo add-apt-repository ppa:deadsnakes/ppa #on fail add
deadsnakes
octo@octo:~# sudo apt install python3.9 #now 3.9 should
install

Create and change into the OctoPrint folder
Create a 3.9 venv(Virtual Environment)
Activate the new environment for further steps to follow

octo@octo:~$ mkdir OctoPrint && cd OctoPrint
octo@octo:~/OctoPrint$ python3.9 -m venv venv
octo@octo:~/OctoPrint$ source venv/bin/activate
(venv) octo@octo:~/OctoPrint$

Note the last line showing our 3.9 environment to be activated.

Add pip and wheel updates

(venv) octo@octo:~/OctoPrint$ pip install --upgrade pip wheel
Requirement already satisfied: pip in ./venv/lib/python3.9/site-packages
(22.0.4)
Collecting pip
 Using cached pip-23.1.2-py3-none-any.whl (2.1 MB)
Collecting wheel
 Using cached wheel-0.40.0-py3-none-any.whl (64 kB)
Installing collected packages: wheel, pip
 Attempting uninstall: pip
 Found existing installation: pip 22.0.4
 Uninstalling pip-22.0.4:
 Successfully uninstalled pip-22.0.4
Successfully installed pip-23.1.2 wheel-0.40.0

Install Octoprint

On successful completion, proceed to install octoprint

(venv) octo@octo:~/OctoPrint$ pip install octoprint
Collecting octoprint
 Using cached OctoPrint-1.8.7-py2.py3-none-any.whl (3.9 MB)
Collecting OctoPrint-FileCheck>=2021.2.23 (from octoprint)
 Using cached OctoPrint_FileCheck-2021.2.23-py2.py3-none-any.whl (19 kB)

Wait for it to run to completion and address any errors that might show up. Hopefully no issues will
arise, mine ran through without failures here.

Assign octo user run permissions

Now let us assign two more permissions to our octo user.

(venv) octo@octo:~/OctoPrint$ sudo usermod -aG tty octo
(venv) octo@octo:~/OctoPrint$ sudo usermod -aG dialout octo

The commands above add octo to the tty and dialout groups, so octo can run terminal session and
connect to our devices like the prinyter port and camera ports.

Do a test run

(venv) octo@octo:~/OctoPrint$ ~/OctoPrint/venv/bin/octoprint serve
2023-05-18 12:49:46,585 - octoprint.startup - INFO -
**
**
2023-05-18 12:49:46,586 - octoprint.startup - INFO - Starting OctoPrint
1.8.7
2023-05-18 12:49:46,586 - octoprint.startup - INFO -
**
**

So we have concluded the basics to get a base install for Octoprint working.

Setting up SSH access to your container

SSH access is not a requirement for Octoprint to work, however if you need to access the linux
environment backend shell, and run useful linux commands to edit configurations and view logs, you
need to get this set up.

SSH comes bundled with Linux and is already set up and installed, we just need some minor edits to
allow users to log in using password authentication. The linux preferred way is to create RSA tokens
and it's a great idea, just beyond the scope if this document. 9)

We are just going to allow a password authentication for now:

We need to:

edit the ssh daemon configuration first
restart the service

We can do it from our host Linux server OS directly on the container like this:

dev@hp-linux:~$ lxc exec octo -- bash -c "nano /etc/ssh/sshd_config"

That opens the sshd_config file on ythe container and allows us to edit it locally.

find and uncomment/edit PasswordAuthentication no to yes

To disable tunneled clear text passwords, change to no here!
#PasswordAuthentication no
#PermitEmptyPasswords no

To disable tunneled clear text passwords, change to no here!
#PasswordAuthentication no
PasswordAuthentication yes
#PermitEmptyPasswords no

Then remember to restart sshd

dev@hp-linux:~$ lxc exec octo -- bash -c "systemctl restart sshd"

Now test ssh connectivity

dev@hp-linux:~$ ssh octo@octo
octo@cr6's password:
Welcome to Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-71-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 System information as of Thu May 18 09:37:40 UTC 2023

 * Strictly confined Kubernetes makes edge and IoT secure. Learn how
MicroK8s
 just raised the bar for easy, resilient and secure K8s cluster
deployment.

 https://ubuntu.com/engage/secure-kubernetes-at-the-edge

Expanded Security Maintenance for Applications is not enabled.

13 updates can be applied immediately.
5 of these updates are standard security updates.
To see these additional updates run: apt list --upgradable

9 additional security updates can be applied with ESM Apps.
Learn more about enabling ESM Apps service at https://ubuntu.com/esm

Last login: Thu May 18 09:34:52 2023 from 192.168.0.32
octo@octo:~$

We are now connected as the octo user on the oct instance of lxc. I use PuTTY10) to connect from my
Windows PC into a Linux shell session to work on the backends of the Linux headless systems.

References
1)

https://ubuntu.com/download/server
2)

https://rufus.ie/en/
3)

https://softwaresupply.net/kb/how-to-create-a-bootable-usb-stick/?gclid=EAIaIQobChMIh_qe98L8_gIVl
Gt9Ch0FcwL7EAAYASAAEgJUj_D_BwE
4)

https://linuxopsys.com/topics/check-unallocated-space-linux#:~:text=Unallocated%20space%20mean
s%20that%20the,a%20particular%20drive%20or%20partition.
5)

https://askubuntu.com/questions/1029040/how-to-manually-mount-a-partition
6) , 9)

https://www.ibm.com/docs/en/sia?topic=kbaula-enabling-rsa-key-based-authentication-unix-linux-oper
ating-systems-3
7) , 10)

https://www.putty.org/
8)

https://community.octoprint.org/t/setting-up-octoprint-on-a-raspberry-pi-running-raspberry-pi-os-debia
n/2337

https://ubuntu.com/download/server
https://rufus.ie/en/
https://softwaresupply.net/kb/how-to-create-a-bootable-usb-stick/?gclid=EAIaIQobChMIh_qe98L8_gIVlGt9Ch0FcwL7EAAYASAAEgJUj_D_BwE
https://softwaresupply.net/kb/how-to-create-a-bootable-usb-stick/?gclid=EAIaIQobChMIh_qe98L8_gIVlGt9Ch0FcwL7EAAYASAAEgJUj_D_BwE
https://linuxopsys.com/topics/check-unallocated-space-linux#:~:text=Unallocated%20space%20means%20that%20the,a%20particular%20drive%20or%20partition
https://linuxopsys.com/topics/check-unallocated-space-linux#:~:text=Unallocated%20space%20means%20that%20the,a%20particular%20drive%20or%20partition
https://askubuntu.com/questions/1029040/how-to-manually-mount-a-partition
https://www.ibm.com/docs/en/sia?topic=kbaula-enabling-rsa-key-based-authentication-unix-linux-operating-systems-3
https://www.ibm.com/docs/en/sia?topic=kbaula-enabling-rsa-key-based-authentication-unix-linux-operating-systems-3
https://www.putty.org/
https://community.octoprint.org/t/setting-up-octoprint-on-a-raspberry-pi-running-raspberry-pi-os-debian/2337
https://community.octoprint.org/t/setting-up-octoprint-on-a-raspberry-pi-running-raspberry-pi-os-debian/2337

	Containerized Linux Print Server using Octoprint - the long way
	Setup The Base Linux OS on the Laptop
	Create a Bridge for LXC(Linux Containers)
	Create a partition on Linux that LXD can use as a storage pool

	Install and configure LXD/LXC(Linux Containers)
	Install the latest stable version of LXD
	Initialise LXD

	Start up and set up Octprint in the container
	Set up a Python 3.9 virtual environment (venv)
	Add pip and wheel updates
	Install Octoprint
	Assign octo user run permissions
	Do a test run
	Setting up SSH access to your container

	References

